Belle II Software

Paul Laycock for the Belle II team

(The work shown is done by the whole Belle II team, thoughts impressions and musings are my own!)

BNL Belle II software responsibilities

Conditions database (CDB)

Distributed data management (DDM)

BNL Belle II software responsibilities

Conditions database (CDB)

Of course, all of this work relies on close

-collaboration with colleagues in SDCC and EDG

Distributed data management (DDM)

Belle II Conditions Model

- Data Model: relational DB
- Single tables for payload, tags, IOVs
 - Payloads can be separated completely from metadata
 - Largely experiment agonistic
- IOVs and payloads resolved independently
- Cache-friendly design
- Largely follows best practice principles in HSF CWP paper:
 - https://arxiv.org/abs/1901.05429

Data model from CWP paper

Belle II Conditions Service

- Containerised component architecture
 - Highly scalable
- Industry-standard components
 - REST interfaces
 - Swagger auto-generates API
- Payloads entirely factorised
 - Postgres for metadata, GPFS for payloads
 - Separate file service for reading
 - Payloads are also cached locally and on cymfs
- Good performance, stress-tested beyond expected Bellell requirements
- DB schema slightly different but principle is the same
 - largely experiment agnostic

Belle II CDB possibilities

- CDB is in good shape, but some key things were missing, especially authentication and authorisation - work in progress
- Workflows and Belle II specific needs will likely require more work through 2019
 as experience with calibrations improves physics data-taking aka phase 3 only
 just started in March 2019

Nevertheless

Belle II CDB could be a blueprint for a generic CDB software

- Making the code experiment independent could open the possibility of making this CDB design available to more experiments
- Would also require work to define experiment-dependent workflows and enduser tools
- Use cases this is particularly appropriate for high rate access patterns of offline distributed computing, where caching is critical

Belle II Distributed Computing

Definition • MC prod / data process • Type (BB, τ τ , ccbar...) • # of events • software version • etc...

- -Production
- -Distribution
- -Merge

Belle II Distributed Data Management

- Designed as a key component of BelleDIRAC, the DDM is well integrated into the DIRAC ecosystem (production system, monitoring, et al)
- However, only basic functionality was mature (and still required work), key features either untested or missing, and the LFC file catalogue is soon to be extinct

Belle II Distributed Data Management - Future I

- Strong desire to move Rucio as DDM
- Evaluation: no show-stoppers but <u>priority was to fix and operate current DDM</u>
- In first stage migration, *maintain current API* to minimise impact
- Rucio is used under the hood but LFC is still master file catalogue

Belle II Distributed Data Management - Future II

- Second stage migration, move to use Rucio as the master file catalogue, interfaced to DIRAC using file catalogue plugin
- Rely on replication policies to define *Rucio rules*, *lifetime policies* to *automate deletion*
- Remove explicit calls to DDM
- Use of file catalogue plugin should avoid most work on user side, but may be able to make more use of Rucio by improving end-user tools

Belle II DDM possibilities

- Current BelleDIRAC DDM performance is ok, but many features missing, and large operations overhead due to lack of automation
- Window of opportunity to "just use Rucio" was very small and passed, too high risk at the start of data-taking, rely on current DDM in 2019, so for now we have operations burden and development effort can only really shift to Rucio once current DDM is good enough
- Looking ahead, move to Rucio will reap rewards
 - Some tooling needed to make full use of advanced monitoring, use lifetime policy, etc.
 and detailed understanding of Rucio operations will take time
 - Development effort should largely be under control, no reinventing the wheel
- Integration with DIRAC very popular in the field, several experiments and communities mentioned this at *Rucio workshop*, including DUNE and SKA
- Hot topic for DIRAC Users workshop next week
- BNL could be unique in having PanDA-Rucio and DIRAC-Rucio expertise
- Good to stay agile, both of those combinations have their advantages, and both have a common denominator - Rucio expertise will be needed for the coming decade

Expectations and Conclusions

- Significant contributions from BNL to Belle II software
 - Thanks go to the whole team at BNL

Expectations

- We are fully committed with the current level of effort, 2.5-3 FTE in NPPS
- The creation of NPPS does not change this today, but optimistic about the future

Opportunities

- CDB is in good shape, if effort existed, potential to take this as a blueprint and offer to other interested experiments, those hosted here at BNL and e.g. DUNE
- **DDM** is more challenging, but the challenges here also represent opportunities
 - DIRAC-Rucio integration is going to happen, opportunity for BNL to play a leading role in this
 - Rucio has established itself as the DDM tool, Rucio expertise is a valuable resource
- Further ahead, **Belle II** is something of a poster child of analysis software:
 - Declarative analysis, using jupyter notebooks at analysis facilities
 - Potentially opportunities to contribute to data analysis tools together with SDCC
- Looking forward to seeing how things evolve in the near future

